Thursday, 8 December 2011

NASA Mars Rover Finds Mineral Vein Deposited by Water


NASA's Mars Exploration Rover Opportunity has found bright veins of a mineral, apparently gypsum, deposited by water. Analysis of the vein will help improve understanding of the history of wet environments on Mars.
"This tells a slam-dunk story that water flowed through underground fractures in the rock," said Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for Opportunity. "This stuff is a fairly pure chemical deposit that formed in place right where we see it. That can't be said for other gypsum seen on Mars or for other water-related minerals Opportunity has found. It's not uncommon on Earth, but on Mars, it's the kind of thing that makes geologists jump out of their chairs."
The latest findings by Opportunity were presented Wednesday at the American Geophysical Union's conference in San Francisco..
Last month, researchers used the Microscopic Imager and Alpha Particle X-ray Spectrometer on the rover's arm and multiple filters of the Panoramic Camera on the rover's mast to examine the vein, which is informally named "Homestake." The spectrometer identified plentiful calcium and sulfur, in a ratio pointing to relatively pure calcium sulfate.
Calcium sulfate can exist in many forms, varying by how much water is bound into the minerals' crystalline structure. The multi-filter data from the camera suggest gypsum, a hydrated calcium sulfate. On Earth, gypsum is used for making drywall and plaster of Paris. Observations from orbit had detected gypsum on Mars previously. A dune field of windblown gypsum on far northern Mars resembles the glistening gypsum dunes in White Sands National Monument in New Mexico.
Throughout Opportunity's long traverse across Mars' Meridiani plain, the rover has driven over bedrock composed of magnesium, iron and calcium sulfate minerals that also indicate a wet environment billions of years ago. The highly concentrated calcium sulfate at Homestake could have been produced in conditions more neutral than the harshly acidic conditions indicated by the other sulfate deposits observed by Opportunity.
Homestake and similar-looking veins appear in a zone where the sulfate-rich sedimentary bedrock of the plains meets older, volcanic bedrock exposed at the rim of Endeavour. That location may offer a clue about their origin.
                                                                                                                    
                                                                                                                      source:NASA


Use of microalgae helps in controlling pollution


Tiny organisms known as microalgae could hold answers to some intractable problems. That includes curbing carbon dioxide emissions that are contributing to global warming and reducing the burden of industrial effluents.Microalgae, like plants, are capable of photosynthesis, using the energy from sunlight to turn carbon dioxide and water into sugar.In a talk at the International Conference on New Horizons in Biotechnology held in Thiruvananthapuram recently, Prof. Yang spoke of his team's efforts at treating municipal wastewater using the single-celled green alga, Chlorella vulgaris.
Wastewater contained plenty of organic compounds and nutrients to sustain the organism. The oils that then accumulated in the cells could be harvested and turned into biodiesel.
It was found that untreated wastewater gave the best algal growth. Nitrogen-fixing bacteria found in the wastewater could be acting as growth enhancers, he noted.